
J. Fluid Mech. (1971), wol. 49, part 2, pp. 289-303 

Printed in #reat Britain 
289 

Viscous incompressible flow between concentric 
rotating spheres. Part 1. Basic flow 

By B. R. MUNSON 
Department of Mechanical Engineering, Duke University, Durham, North Carolina 

A N D  D. D. JOSEPH 
Department of Aerospace Engineering and Mechanics, 

University of Minnesota, Minneapolis, Minnesota 

(Received 13 November 1970 and in revised form 3 May 1971) 

The steady motion of a viscous fluid contained between two concentric spheres 
which rotate about a common axis with different angular velocities is considered. 
A high-order analytic perturbation solution, through terms of order Re7, is 
obtained for low Reynolds numbers. For larger Reynolds numbers an approxi- 
mate Legendre polynomial series representation is used to reduce the governing 
system of equations to a non-linear ordinary differential equation boundary- 
value problem which is solved numerically. The resulting flow pattern and the 
torque required to rotate the spheres are presented for various cases considered. 

1. Introduction 
We consider here the steady laminar motion of an incompressible viscous 

fluid contained between two concentric spheres which rotate about a common 
axis with fixed angular velocities. This spherical annulus flow is a special example 
of fluid motion in a rotating container and is of interest in both engineering design 
and geophysics. In  part 2 we consider the hydrodynamic stability of the steady 
laminar motion discussed here. 

Since we consider rotationally symmetric flows (independent of the longitude) 
the governing incompressible Navier-Stokes equations take the form of a pair of 
coupled non-linear partial differential equations, one fourth order and the other 
second order, in terms of a meridian plane stream function and an angular velocity 
function. These equations are solved in terms of a high-order analytic perturba- 
tion solution in powers of the Reynolds number, Re, for small or moderate values 
of Re. For larger values of Re the partial differential equations are written as an 
infinite set of coupled non-linear ordinary differential equations by means of a 
Legendre polynomial expansion of the dependent variables. An appropriate 
truncation of the expansion provides a finite-order non-linear two-point ordinary 
differential equation boundary-value problem which is integrated numerically. 
This Galerkin-type procedure allows the flow field to be determined at Reynolds 
numbers larger than those obtainable by the perturbation solution. 

Previous theoretical work concerning the flow in a spherical annulus can be 
grouped as either (i) low-order analytic perturbation solutions for small Reynolds 
numbers, (ii) singular perturbation considerations (boundary layer-inviscid 
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core) for large Reynolds numbers and (iii) numerical integration of the governing 
partial differential equations. For example, Ovseenko (1963) has shown that 
for sufficiently small Re the flow of a viscous incompressible ff uid within a specified 
volume can be obtained in the form of an analytic perturbation solution in terms 
of a power series in Re. He determined this solution for a specific caseof aspherical 
annulus through terms of order Re3. Higher-order terms, necessary in order to 
consider larger values of Re, were not obtained because of the rapid increase in 
complexity of the governing system as the order is increased. One objective of 
this study is to determine the higher-order perturbation solution. 

For large Reynolds numbers singular perturbation solutions have been con- 
sidered by various authors including Proudman (1956), Stewartson (1966), 
Pedlosky (1969), Carrier (1965), Bondi & Lyttleton (1948) and others. Pearson 
(1967) has integrated the time-dependent governing partial differential equations 
numerically to determine the flow field for several cases with Reynolds numbers 
from 10 to 1000. 

Thus except for Pearson's results the previous considerations appear to be 
limited to either very small or very large Reynolds numbers - in either case the 
Reynolds numbers are not in the range needed'in the stability analysis of part 2. 
In  addition, the relatively large computational time necessary to numerically 
integrate the partial differential equations and the resulting form of the solution 
(values a t  various mesh points) are not well suited for use in a stability analysis. 

Hence we determine the basic flow for moderate values of Re in terms of a high- 
order analytic perturbation solution (through terms of order Re7 for example) 
and also in terms of an appropriate series truncation (actually a Galerkin-type 
procedure). In  addition to the flow field considerations we consider the torque 
required to rotate the spheres at  their given angular velocities. 

2. Governing equations 
The geometry of the spherical annulus considered is indicated in figure 1. 

A viscous incompressible fluid fills the gap between the inner and outer spheres 
which are of radii R, and R, and rotate about a common axis with constant angular 
velocities a, and Q2,  respectively. Since the flow is assumed to be independent 
of the longitude, q5, the Navier-Stokes equations can be written in terms of a 
stream function in the meridian plane, $, and an angular velocity function, 0, as 
follows (Rosenhead 1963): 

I 

where 
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The non-dimensional velocities are related to @ and Q as follows 

where r is the dimensionless radial co-ordinate. The Reynolds number is defined 

Re = Q,R:/v (3) by 

where R, is taken as the characteristic length and Q, as the characteristic angular 
velocity. In  the two extreme cases, Qo = Ql if the outer sphere is stationary and 

FIGURE 1. Spherical annulus. 

i-2, = Q, if the inner sphere is stationary. When both spheres rotate the character 
of the flow field is generally dominated by the motion of either the inner or outer 
sphere. The angular velocity of the dominant sphere is then taken as the charac- 
teristic angular velocity. The specific choice of Q, is indicated for each example 
considered. The flow is assumed to be symmetric with respect to the equator so 
that the range of the independent variables becomes 

q < r 6 1 ,  O < O < & r ,  

where q = RJR, is the radius ratio. Change to the physical variables, denoted by 
( )*, is accomplished according to 

*r = R2r, $* = RZQo$, Q* = RiQ,R, 

19-2 



292 B. R. Munson and D. D.  Joseph 

The viscous boundary conditions which complete the formulation of the 
problem are that $ = a$/& = 0 on the boundaries, with n denoting the unit 
normal, and Cl is prescribed since the angular velocities are given. 

Thus the fluid motion consists of a ‘primary motion’ about the axis of rotation 
given by and a ‘ secondary motion ’ in the meridian plane given by $. Although 
the secondary motion is small relative to the motion about the axis of rotation 
when the Reynolds number is small, it can become comparable to the primary 
motion for larger values of Reynolds number. 

3. Perturbation solution for low or moderate Reynolds numbers 
In  this section we consider a high-order analytic perturbation solution of the 

above system which governs the viscous incompressible flow in a spherical an- 
nulus. As indicated previously, Ovseenko (1963) has shown that for suKiciently 
small Reynolds numbers the flow in a bounded region, such as a spherical an- 
nulus, can be obtained in the form of an analytic perturbation solution in positive 
powers of Re. Ovseenko considered such a solution but because of the difficulties 
in the mechanics of calculating the vast number of coefficients needed for the 
high-order solutions he limited his considerations to terms of order Re3 or less. 
As shown below, the use of a computer as an accurate book-keeping device allows 
the perturbation solution to be carried out to a high order. 

In order to obtain a solution valid for larger Reynolds numbers we consider 
here the results through Re’. In  principle we can calculate all of the Taylor 
coefficients for the perturbation solution, but in practice accuracy in determining 
these coefficients limits the order of the perturbation solution which can be ob- 
tained. Thus, it turns out, we are limited to values of Re less than 100 or so, 
and it is not possible to determine the radius of convergence of the perturbation 
solution (either analytically or numerically). It is not ruled out that the solution 
may be an entire function in Re. 

The perturbation solution of equations (1) can be written in the form 

sin2 Bq(8)  qj l ( r )  
odd odd 

sin2 O P , ( O )  fj,(r)] ,j 
1 = O  j = O  
even even 

(4) 

where q ( 8 )  is tho jth-order Legendre polynomial. Thus the 8 dependence of $ 
and !2 separates from the r dependence for the perturbation solution and allows 
the governing system to be written as an ordinary differential equation problem 
for the component functionsfjl(r), gjl (r) .  This set of equations is obtained by sub- 
stitution of the form given by (4) into the governing equations (1) and equating 
like powers of Re. The 0 dependence is removed by multiplying the system by an 
appropriate Legendre polynomial, P,(O), and integrating over 0 < 8 < 7r. Use 
of various orthogonality properties and recurrence relations for Legendre 
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polynomials provide, after lengthy calculations, that the perturbation equations 
can be written as 

p-1-2 min[p--l-m,p-l] c 
i = l  

c 2(2n+ 1) p 

1=0 m=max[O,n-2-1] 
Z f n l 3  = 

+Dlmnrg~g~t,p--j-l] for n = 1 , 3 , 5 , ,  ... and p = 1,3,5,  ..., n, 
where ( )' 5 d/dr.  

The operators Y,, L,, M, are defined as 
0 

d4 an d2 b, d c, L =-+--+--+- dr4 r2 dr2 r3 dr r4' 
a 2  2 d [2-Z(1+1)] 
dr2 r dr M - -+ ' - r2 

where un = - 2 ( n + l ) ( n + 2 ) ,  bn = 4 ( n + l ) ( n + 2 ) ,  

c, = (n - 1)  (n+ 2)  (n+ 1) (n+ 4)  

and Sp,  is the Kronecker delta. The boundary conditions corresponding to (5) 
become 

glm = g;, = 0 at r = 7, r = 1 for all 1,m, 

fEm = 0 at r = 7, r = 1 for all 1,m =k O , O ,  

f o o  = T*/,ii at r = 7 and foo  = 1 at r = 1 if Re = Sl,R;/v, 
l ( 7 )  and either 

or foo=72 at r = 4 and foo=b  at r = 1 if Re = Q2,R;/v,  

where jZ = Q2/Ql is the angular velocity ratio. The numerous constants 

alnin, Almn, Blnin, .*., Glmn 

are defined in terms of integrals of various combinations of Legendre polynomials, 
their derivatives, and trigonometric functions. These constants can all be evalu- 
ated either explicitly or in terms of recurrence formulas in terms of the single 
integral, 

ivpgS = P, p13 $ax, x = cos e, 
S'1 
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given by Hobson (1955, p. 87). The detailed evaluation of these constants can be 
obtained from Munson (1970). 

The component functions, fnp(r), gnp(r),  are solved successively as 

f00 ,  gll,f22,fO2,9339 g133f44, * * .  

up to the desired order. When solving successively in this fashion the governing 
equations are of the form I (8) 

=%nfnp(r) = = w 9 3  
Lngnp(r )  = 

where T ( r ) ,  g ( r )  are functions known in terms of the previously calculated lower 
order fij, gii .  The solutions of these inhomogeneous equations are given by 

and 

1 1 + - (rl-n(n+2- rn+2(1-n) g(() dc + Brn+z + Cr1-n + Dr-(l+n), (10) 

where the constants A, B, A ,  B, C ,  D ,  are determined such that the desired 
boundary conditions are satisfied at  r = r,~ and r = 1. 

Careful consideration of the governing equations ( 5 )  and the solutions of the 
inhomogeneous equations (9), (10) combined with the fact that either multipli- 
cation, differentiation or integration of the function ri(lnr)j, where i, j are in- 
tegers, will produce a function of the same form shows that the desired solution 
can be written as 

(%+ 1)  

fnp(T) = x x ~ $ ~ r i ( I n r ) j ,  gnp(r) = x xp&r%(lnr)j .  (11) 
i i  i j  

Here the integer i ranges over an appropriate interval (both positive and nega- 
tive) a n d j  is a non-negative integer. The problem, then, is to determine these 
coefficients a%, pi$ such that the perturbation equations and boundary con- 
ditions are satisfied. The large number of coefficients involved in the higher-order 
solutions (on the order of one thousand coefficients for a solution through Re7) 
and the great accuracy neededfor these coefficients dictate the use of the computer 
as an accurate book-keeping device. 

For a given radius ratio, q = Rl/R2, and a given angular velocity ratio, 
,G = Q2/Ql,  the actual solution to the perturbation problem is carried out as 
follows. We start with the lowest-order function,foo(r), and calculate the solution 
through the desired order as indicated previously. Hence with the lower-order 
solutions known by previous calculation the right-hand side of (5) is determined 

where the coefficients Z;$, &$ and the range of the indices are kept track of by 
the computer. The solution of the inhomogeneous equations (9), (10) are deter- 
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mined in a similar form and the appropriate boundary conditions are applied to 
determine the various otherwise arbitrary constants in (9), (10). 

We compare here the various order perturbation solutions at various Rey- 
nolds numbers with the solutions calculated by a Galerkin-type procedure 
discussed in the next section. In  particular we consider the results as a function of 
the radial co-ordinate r for 0 = 45" at  various values of Re for the case where 
7 = 0.5 and ,G = 00; that is the inner sphere half the diameter of the outer sphere 
and the inner sphere not rotating. These results are typical for other values of 
r,  0 , ~  and ,G. Figures 2 and 3 indicate the results. 

30 

2- 2 20 

10 

0- 

0.5 0.6 0.7 0.8 0.9 1 .o 

0.5 0.6 0.7 0.8 0.9 1 .o 
r 

FIGURE 2. Comparison of stream function, $, for various order perturbation solutions with 

-.- , 3 ; ---, 5 ; -, true solution. 
(a) Re = 10 and (a) Re = 50. 8 = 45", 7 = 0.5, ,Z= co. Perturbation order N,: -- , 1 ;  

Previous considerations have been limited to either the lowest-order terms 
(through R e )  or at most through Re3. For Re < 10 these low-order solutions and 
the true solutions are essentially the same, but for Re = 50 the lowest-order 
solution is in error by about 20 yo. However, the fifth-order solution (throughRe5) 
agrees very well with the actual solution for Re = 50 (about 1 % difference). 
For Re = 80 even the seventh-order solution is in error by about 15 yo, but as 
the order increases the perturbation solutions appears to be converging to the 
true solution. 
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Although for Re = 100 the perturbation solution appears to diverge it is not 
known if the radius of convergence is in the neighbourhood of Re = 100 or if the 
apparent divergence is caused by insufficient accuracy in calculating the numer- 
ous coefficients of the exact perturbation solution. The latter is felt to be the case. 

40 

n 
0.5 0.6 0.7 0.8 0.9 1 .o 

I I I I 
(b) 

60 - - 
/-- \ 

0.6 0.7 0.8 0.9 I .o 
r 

FIGURE 3. Comparison of stream function, ~, for various order perturbation solutions with 

-.- 3; ---, 5 ;  ... , 7 ; -  , true solution. 
(a )  Re = 80 and ( 6 )  Re = 100. 0 = 45", 7 = 0.5, fi  = co. Perturbation order N ,  : -- , I ;  

It is not uncommon for the fourteen-place computer accuracy to be in- 
sufficient for problems of this type which consist of solutions containing many 
terms, as is the case for the higher-order solutions. In  fact such accuracy prob- 
lems did not allow the perturbation solution to be carried out through terms of 
higher order than Re7. 

Although it would be of interest to know the exact radius of convergence (or 
to have an approximate rigorous estimate), the complexities of the governing 
equations apparently have not allowed this as yet. It is not ruled out that the 
perturbation solution may be an entire function in Re. In any event, the inclusion 
of terms of order greater than Re3 is seen to provide a fairly accurate description 
of the flow field for Reynolds numbers considerably above the Re = 10 limit of 
the low-order consideration. 
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4. Legendre polynomial series representation 
Since the analytic perturbation solution discussed above did not allow the 

solution to be calculated at Reynolds numbers large enough for the stability 
considerations of part 2 the following method was used. The functions q?, Q can 
be expanded in a Legendre polynomial series representation as 

m 

where the non-linear ordinary differential equations governing the component 
functions f i(r), q,(r) can be obtained from the original system (1). Of course the 
result is an infinite set of coupled equations. An appropriate truncation of the 
series given in ( 1 2 )  thus results in a finite number of coupled ordinary differential 
equations which can be integrated numerically. Essentially the method is an 
appropriate Galerkin-type procedure used to reduce the original partial differen- 
tial equation to ordinary differential equations. That the method works well with 
the series truncated a t  a reasonable value will be seen below. 

Two advantages of solving the original problem in this fashion as opposed to 
a numerical integration of the original partial differential equations are the follow- 
ing. For a given physical system (given Re, ?, ,&) the computer time necessary to 
generate a solution in terms of the Legendre polynomial expansion is less than 
that required to integrate the original partial differential equations. Secondly, 
the results in terms of numerical values for the r dependence and Legendre 
polynomial representation for the 6' dependence are more convenient for the sta- 
bility considerations than a set of values of q?, Q at various mesh points through- 
out the r and €' range. 

Thus the functions q?, !2 are truncated as 
Nt 

1=1  
w, €') = c sin2 64(€') gz(9,) 

I odd 
Ns 

1=0 
Q(r, 0) = sin2€'e(€')fi(r), 

even 1 

and substituted into (1). Multiplication by PJ6)  and integration over 0 6 €' 6 7~ 
(similar to what was done for the perturbation equations ( 5 ) )  produces the follow- 
ing set of coupled non-linear ordinary differential equations. 

eveu 
for n = 0 , 2 ,  ..., Nt-  1, 

l+m>n-2 
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The various constants qm,, Aim,, . . . , Glmn and operators Sn, L,, Ml are as defined 
in 5 3, and the boundary conditions can be written in the following form 

f i = O  at  r = r ,  r = l  for Z=2,4 , . . . ,Nt-1 ,  

g l = g ; = O  at r = r ,  r = l  for Z = 1 , 3  ,..., N,, 

fo = q2J-l at r = T,I 
fo = 1 at r = 1 if Re = R2,Q2/v 

and either 

or fo = 72 at r = 7, 
fo = j  at r = 1 if Re = R2,Sl/v. 

We have used the fact, which results from the assumed symmetry with respect 
to the equator, thatf,(r) = gm(r) = 0 if Z is odd or m is even. 

To illustrate the structure of this system we consider the lowest-order trunca- 
tion, Nt = 1 and obtain the approximation 

$(r, 6 )  = sin2 6 cos egl(r), 
Q(r,B) = sin26fo(r), 

with the governing equations given by 
2 2Re 

f: - $0 = - 3 g;.f0, I 
and boundary conditions for a stationary inner sphere (ji = CO) as 

fo = g1 = g; = o at r = 7, 
f o = l ,  g , = g ~ = O  at r = l .  

The accuracy of this representation (the lowest-order Galerkin approximation) 
is not expected to be good for any but small Reynolds numbers. (It is noted that 
a linearization of (17)  is precisely the lowest-order perturbation system.) Higher- 
order truncations, Nt > 1 allowing consideration of larger Re, provide the same 
general form for the governing system,,but the number of terms involved increases 
very rapidly with Nt. 

The governing non-linear two-point boundary-value problem was integrated 
numerically using a Runge-Kutta-Gill technique for various combinations of 
Reynolds number, radius ratio, angular velocity ratio, at various truncation 
orders, Nt. For small Re the solutions obtained were compared with the perturba- 
tion solution of the previous section and for larger Re they were compared with 
Pearson’s (1967) numerical results. In  general a value of Nt = 7 was sufficient to 
provide an accurate representation of the ff ow field for Reynolds numbers needed 
in the stability considerations, Re < 500. It is noted that because of the extreme 
sensitivity to initial conditions the standard ‘shooting method ’ could not be 
used in solving this boundary-value problem for Re > 200. For larger values of Re 
the quasi-linearization or Newton-Kantorovitch method was used quite success- 
fully. 
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Typical results obtained by the above method are discussed below. For Re < 10 
the lowest-order approximation, Nt = 1, provides a very accurate description of 
the flow field (as does any higher-order truncation). For Re = 100 and 7 = 0.5, 
,G = 00 (inner sphere stationary), for example, the results with Nt = 5 are indis- 
tinguishable from those given by Pearson and the higher-order truncations. 

FIGURE 4. (a )  Stream function, $, and (b )  angular velocity, w, for both spheres rotating 
at  the same rate but in opposite directions, p= - 1.0, and 7 = 0.5 and Re = Q2R:/v = 100. 

FIGURE 5 .  (a )  Stream function, +, and ( b )  angular velocity, w ,  for both spheres rotating 
at  the same rate but in opposite directions, p = - 1.0, and 7 = 0.5,  Re = Q, R:/v = 500. 

However for Re = 1000 and Nt = 7 the comparison between Pearson’s solution 
(figures 4 and 5 of his paper) and our solution is not as good. While the angular 
velocity contours compare very well, the small reverse flow region near the equa- 
tor is not sufficiently described by the Nt = 7 approximation. However for 
Re 6 500 a comparison of the results for various truncations indicate that the 
solution with Nt = 7 is quite good. 
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The character of the flow field depends strongly on the relative rates of rotation 
ofthe two spheres. For example, with the outer sphere stationary the secondary 
flow consists of one counterclockwise swirl. An increase in Re increases the 
strength of this swirl and forces its centre closer to the equator. On the other hand, 

FIGURE 6. ( a )  Stream function, $, and ( b )  angular velocity, w ,  for outer sphere rotating a t  
half the rate of thc inner sphere arid in the opposite directions, ,Z = - 0.5, and = 0.5, 
Re = ~ , R : / V  = 100. 

FIGURE 5 .  ( a )  Stream function, $, and ( b )  angular velocity, w ,  for outer sphere rotating a t  
half the rate of the inner sphere and in the opposite direction, @ =  -0.5, and 7 = 0.5, 
Re = Q,R;/v = 500. 

if the inner sphere is stationary the secondary motion consists of a single clock- 
wise swirl if Re is not too large. An increase in Re causes the flow to form a smaller 
counterclockwise swirl and to take on the cylindrical sheath character discussed 
by Proudman (1956). These characteristics are indicated by the results of Pear- 
son (1967) and by the solutions obtained by the above method. 
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It is of interest to determine what flow situation prevails when both spheres 
rotate, but in opposite directions. Figures4 to 7 indicate the flow fieldfor two cases; 
(i) both spheres rotate at the same rate but in opposite directions, ,G = - 1, 
and (ii) the inner sphere rotates at twice the rate of the outer sphere and in the 
opposite direction, ji = - 0.5. In  the second case with 7 = 0.5 the speeds on the 
two spheres at the equator are equal. 

As can be seen in figures 4 and 5 the motion of the outer sphere dominates when 
,.G = - 1 with the resulting flow consisting of one clockwise swirl for Re = 100. 
The influence of the inner sphere is apparent for Re = 500 in terms of a small 
counterclockwise swirl in the polar region near the inner sphere. The tendency 
toward a cylindrical sheath character as Re increases is also apparent in the 
angular velocity contours. 

As can be seen in figures 6 and 7 neither sphere dominates the flow field when 
,G = - 0-5. Rather two swirls of opposite direction are obtained for all values of Re 
considered. Again, as Re increases, the tendency toward a cylindrical sheath 
character is apparent (unlike the case when the outer sphere is stationary, ,G = 0). 
Additional results for other angular velocity and radius ratios are given by 
Munson (1970). 

5. Torque calculations 
One of the important physical properties obtainable from the basic flow dis- 

cussed above is the torque required to rotate the sphere at a given rate. The 
torque, M ,  is given by 

M = 21" pr3sin207+,dOd$, 
$=a e=o 

where ,u is the viscosity of the fluid and T$, the component of the stress tensor. 
Substitution of the Legendre polynomial expansion (12) into this expression 
leads to the following, 

r4Q, A iw = 4v- C(h/r2)'lr=r*/B,%, 
R2 1 

where 

Only the first two component functions, fa f2, contribute to the sum; the remainder 
are zero because of the orthogonality properties of q ( 0 )  (i.e. az = 0 if I is even 
and I 2 4). Thus we obtain the torque as 

(18) 
M = $ 7 ~ ; ~ ! 2 ~  Rz%, 

where f i  = I(f~-o.2~~)-2(fo-o.2fi)l,=l. 

Here f i  is the non-dimensional torque which is a function of the geometry, 4, 
relative rates of rotation, ji, and Reynolds number. Figures 8 and 9 indicate this 
torque for four cases of interest. 
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0 500 1000 
Re = !&R;/v 

FIGURE 8 .  Non-dimensional torque, f i , & s  a function of Reynolds number 
for rotating spheres. 7 = 0.5. (a )  $ = 0, (b )  $ = - 0.5. 
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I .n . ~I 

0 500 I000 

Re = il,Rg/v 
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I .0 
0 500 

Re = Q,R;/v 
FIGURE 9. Non-dimensional torque r i i ,  as a function of Reynolds number for 

rotating spheres. 7 = 0.5. (a )  p = - 1, ( b )  p = 03. 
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